A Fixed-Pattern Noise Correction Method Based on Gray Value Compensation for TDI CMOS Image Sensor

نویسندگان

  • Zhenwang Liu
  • Jiangtao Xu
  • Xinlei Wang
  • Kaiming Nie
  • Weimin Jin
چکیده

In order to eliminate the fixed-pattern noise (FPN) in the output image of time-delay-integration CMOS image sensor (TDI-CIS), a FPN correction method based on gray value compensation is proposed. One hundred images are first captured under uniform illumination. Then, row FPN (RFPN) and column FPN (CFPN) are estimated based on the row-mean vector and column-mean vector of all collected images, respectively. Finally, RFPN are corrected by adding the estimated RFPN gray value to the original gray values of pixels in the corresponding row, and CFPN are corrected by subtracting the estimated CFPN gray value from the original gray values of pixels in the corresponding column. Experimental results based on a 128-stage TDI-CIS show that, after correcting the FPN in the image captured under uniform illumination with the proposed method, the standard-deviation of row-mean vector decreases from 5.6798 to 0.4214 LSB, and the standard-deviation of column-mean vector decreases from 15.2080 to 13.4623 LSB. Both kinds of FPN in the real images captured by TDI-CIS are eliminated effectively with the proposed method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Circuit Design of Current-Mode Image Sensor Embedded Smooth Spatial Filter With Flash A/D Converter

The paper presents a current-mode CMOS image sensor embedded smooth spatial filter algorithm with a flash analog-to-digital (A/D) converter. The sensor includes a 66×66 pixel array with an on-chip 6-bit A/D converter that can identify the output value of pixels in gray level resolution. The last row of pixel cells (1 ×66) based on the double sampling is used for reducing fixed pattern noise (FP...

متن کامل

Using Polynomials to Simplify Fixed Pattern Noise and Photometric Correction of Logarithmic CMOS Image Sensors

An important class of complementary metal-oxide-semiconductor (CMOS) image sensors are those where pixel responses are monotonic nonlinear functions of light stimuli. This class includes various logarithmic architectures, which are easily capable of wide dynamic range imaging, at video rates, but which are vulnerable to image quality issues. To minimize fixed pattern noise (FPN) and maximize ph...

متن کامل

Temperature Sensors Integrated into a CMOS

In this work, a novel approach is presented for measuring relative temperature variations inside the pixel array of a CMOS image sensor itself. This approach can give important information when compensation for dark (current) fixed pattern noise (FPN) is needed. The test image sensor consists of pixels and temperature sensors pixels (=Tixels). The size of the Tixels is 11 μm × 11 μm. Pixels and...

متن کامل

Scene-based non-uniformity correction: From algorithm to implementation on a smart camera

Raw output data from image sensors tends to exhibit a form of bias due to slight on-die variations between photodetectors, as well as between amplifiers. The resulting bias, called fixed pattern noise (FPN), is often corrected by subtracting its value, estimated through calibration, from the sensor’s raw signal. This paper introduces an online scene-based technique for an improved fixed-pattern...

متن کامل

A High-Dynamic-Range Optical Remote Sensing Imaging Method for Digital TDI CMOS

The digital time delay integration (digital TDI) technology of the complementary metal-oxide-semiconductor (CMOS) image sensor has been widely adopted and developed in the optical remote sensing field. However, the details of targets that have low illumination or low contrast in scenarios of high contrast are often drowned out because of the superposition of multi-stage images in digital domain...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2015